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How to pick the best error measurement statistic 
 

A model is an approximation of reality. This means that every model will inevitably generate errors 

when compared to reality. These errors, though signs of the imperfection of a model, are also useful 

indicators of how good the model is and how accurate and reliable are the model results. 

There is no doubt, if you search the web, that you will find some fine articles on errors and error 

measurements. Depending on your ambitions and background, they will be more theoretical or 

practical, but most of them will provide very useful information about different error/residual 

statistics. However, very few of them will be explicit in recommending which one and why you 

should use one error metric vs another. 

Just to clarify, this white paper will not go into the semantics of errors vs residuals. We will use both 

expressions to mean the same, i.e., we will treat an error/residual as the difference between what is 

actually happening and what could be happening according to the model.  

The objective of this paper is to remind you what is typically used as error measurement statistic 

(error metrics) and recommend which one(s) seem to outperform the rest. In practical terms, this 

means that you do not have to waste your time calculating half a dozen of error metrics. One or two 

will suffice. We’ll explore and recommend which ones are the top candidates.  

How are we going to go about this? We’ll create some artificial estimates (or model fits) and take a 

look into errors generated by these models. From there, we’ll calculate a variety of error metrics 

(such as the mean error, mean square error, etc.), and then decide which one of the metrics is the 

most useful to be used to judge the “quality” of the model. We are interested in how the error 

metrics respond to different models in terms of sensitivity and discrimination. In other words, how 

do they respond to the changes in the magnitude of errors (sensitivity) and are they able to detect 

the presence of different types of biases in the results (discrimination).  

The approach that we will take will be experimental and observational. In other words, we’ll create 

some fixed scenarios and produce model predictions, then measure every error metric against this 

scenario. Once we compared every metric against every model scenario, we’ll recommend which 

error metric to use and not to waste your time with others. 

We do not mean to say that the other error metrics are useless. We are just trying to say that the 

other metrics either do not say anything new when compared to our chosen metric, or that they do 

not show enough sensitivity towards certain biases and do not discriminate sufficiently against 

different biases present in the model outcomes.   

Although it was not our original intention, you will see that we will cast some serious doubts on the 

r-squared metric. This most popular metric for evaluating the fitness of the model for the given 

dataset has some serious shortfalls. 

To start with, we said that we will treat errors and residuals as two interchangeable concepts. For all 

practical purposes, we will stick to the word error. So, what is an error? 

An error can be considered a deviation in quantity from what you tried to estimate or predict and 

what actually is the quantity in reality. This quantity could be either a population parameter, such as 

the true mean, or it could be the future sales figures in a time series. Regardless of what method or 
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model you used, this method produces the value ŷ and the true value is actually y. The difference 

between the true value (quantity y) and estimated value (model value ŷ) is considered an error e: 

e = y – ŷ      (1.1) 

Using this simple equation, once you have your model or estimate errors calculated, these errors will 

be subjected to further theoretical and practical scrutiny. They need to comply with certain 

assumptions, which will vary from method to method. Some of the obvious, for those using 

regression, are the assumption of normality, heteroscedasticity, independence, etc. Again, you will 

find many excellent articles on the web dedicated to these assumptions, so we will not cover them 

here.  

We also do not intend to cover in this paper the sources of errors. We said that, by definition, every 

model produces errors. However, some models result in smaller errors and some with more 

significant errors. On a very general level, we can state that more significant errors are generated 

because we either used a suboptimal model, or we did not have enough data. In fact, often we can 

assume that if we had enough data, we would probably be able to find a better model to fit our 

dataset, which would minimise errors.  

Unfortunately, this is not always true, in particular when we are dealing with predictive models, as 

opposed to just a straightforward estimate of a single quantity/parameter. Predictive models, or 

forecasting in general, deal with the future that is inherently linked with uncertainty. This means 

that no matter how much data we have, we will never eliminate uncertainty and bring errors to 

zero. The only thing that we can hope for is to maximise the precision of our predictions. Even this is 

impossible if we deal with long-term forecasts. It is a sad fact of life that the further you try to 

predict the future, the wider the prediction interval will be. In other words, your errors will 

inevitably be bigger and bigger as the uncertainty related to the future grows. 

Still, we will make one simple yet crucial assumption, which is that an error statistic of our choice has 

to imply that we need to change the model or increase the size of the sample (dataset). Both of 

these two elements, i.e., selecting a different model/method and/or increasing the size of the 

dataset are usually within our control (though it might have financial consequences).  

So, the primary objective of this paper is to recommend one single metric, or a combination of 

metrics, that will help us select the best model and assess if our dataset is sufficiently large to be 

useful. 

 

What are the error metrics available to us? 
There was a temptation to make this list as wide as possible, and believe me, I could have created a 

real monstrosity of the list. On the other hand, the ambition of this paper is to reduce the list and 

recommend the best metric. This was the reason for selecting just the most obvious error metrics 

and analysing their respective performance for the sake of selecting the one or two that are most 

useful.  

Error measurements, or error metrics, generally fall into two categories, they either measure the 

accuracy, or they measure the precision of our estimates/predictions. A generic phrase, especially 

when referring to the model rather than the results, is “goodness of fit”. In other words, is the model 

we used to make estimates/predictions a good fit for our dataset. 
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Some of the error metrics listed below are standard metrics used in statistics and applied in 

numerous software packages. However, one or two might surprise you. The two, relatively obscure 

ones called SMAPE and MASE, surfaced only a few years ago when Microsoft implemented ETS AAA 

model in Excel. Although not the most widely used metrics, I included them in this list just because 

they became so ubiquitous through the use of Excel. 

So, let’s start with the list. We’ll first name them, show the equation and then briefly describe how 

to interpret every one of these error metrics. 

 

Mean Error    𝑀𝐸 =
∑(𝑦𝑡−𝑦̂𝑡)

𝑛
=

∑𝑒𝑡

𝑛
    (1.2) 

 

Mean Absolute Error   𝑀𝐴𝐸 =
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Mean Square Error   𝑀𝑆𝐸 =
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Root Mean Square Error  RMS = √
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2
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Mean Absolute Percentage Error 𝑀𝐴𝑃𝐸 =
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Symmetric Mean Absolute Percentage Error 𝑆𝑀𝐴𝑃𝐸 =
1

𝑛
∑
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   (1.8) 

 

Mean Absolute Scaled Error  𝑀𝐴𝑆𝐸 =
1
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         (1.9) 

 

Standard Error    𝑆𝐸 = √
∑(𝑦𝑡−𝑦̂𝑡)
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Relative Standard Error    𝑅𝑆𝐸 = 100√
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R-squared (Coefficient of Determination)     𝑟2 =
∑(𝑦̂𝑡−𝑦̅)

2

∑(𝑦𝑡−𝑦̅)
2 = 1 −

∑(𝑦𝑡−𝑦̂𝑡)
2

∑(𝑦𝑡−𝑦̅)
2   (1.12) 

 

All the equations use the same symbols, which are yt for the actual value, ŷt for the model estimated 

value and et for the error, which is defined as et = yt - ŷt. The only exception is the last equation 

(1.12), which includes the symbol for the mean value 𝑦̅. In fact, the numerator in the first part of the 

equation (1.12), ∑(𝑦̂𝑡 − 𝑦̅)2, describes the regression sum of squares, or the variations (errors) 

explained by the model, and the denominator, ∑(𝑦𝑡 − 𝑦̅𝑡)
2, describes the total sum of squares. In 

the second part of the equation, the numerator is ∑(𝑦𝑡 − 𝑦̂𝑡)
2, which is the error sum of squares, or 

variations (errors) unexplained by the model. However, we will not go into any of that. 

We will make another assumption, which is that we have used some unspecified two-parameter 

model to calculate the estimates. This explains why for some of the metrics we are using n-2 in the 

denominator rather than n. The value of n-2 becomes the number of degrees of freedom (df), which 

is what we need for some of the error metrics as opposed to a simple n, representing the total 

number of errors. 

The last point of clarification, in case it is needed, is related to how various error metrics are used to 

evaluate the results and a model. The general principle is that the lower the value of the metric, the 

better the model. Some metrics operate within a particular range, in which case this principle is not 

correct. However, when we come to that, we’ll explain how to interpret such errors. 

 

What is the meaning of every error metric? 
We listed 11 different error metrics but not all of them measure the same thing. The most intuitive 

way to explain this is to use some simulated data and put these error metrics in the context of the 

units.  

 

Figure 1. Actual data y and a model estimates ŷ for the data set y 

In the example above, we are using a very small dataset y, with only 10 observations, or 

measurements, representing the number of tonnes of a particular product produced in 10 
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consecutive and equidistant units of time. The values of ŷ represent the estimates we calculated 

when we applied a model in our attempt to approximate the real data with the model. 

A small digression here. If our definition of a model is that it is a method of approximating reality, 

then the word approximating implies that we are hoping the model will produce the results as close 

as possible to the real values. In other words, we are hoping that the results will be accurate. Having 

said that we know that some variability around the real values is to be expected. 

If the model estimates are not spread widely around the actual numbers, in other words, the 

standard deviation of the errors measured against the actual data is small, then we also have a 

precise model, or precise results data. In summary, our ambition should always be to have as 

accurate and as precise a model as possible. 

The estimates ŷ in Figure 1 are the result of some unspecified linear model. As it happens, we used 

just a simple linear regression model ŷ = 0.53 + 0.76x, where x is the sequential numbers from 1 to 

10 representing the time periods in which the measurements were observed. 

From Figure 1 we can see (cell B12) that over that interval of 10 periods, we produced in total 47 

tonnes of the material with an average production of 4.7 tonnes per period (cell B13), as well as how 

has this production changed from one period of time to the next. We can also see that the model we 

used produced some values that are close to the actual values, but clearly not perfect as we have 

some deviations from the actual data. However, the model total also amounts to 47 tonnes over the 

same period of time with the same average production of 4.7 tonnes per time period. 

If we charted these two datasets, y and ŷ, i.e., the actual and model data, we could see how they are 

related in Figure 2. 

  

Figure 2. The actual production in tonnes and the model data also in tonnes 

We can see that our model produced a straight line (linear trend), which is to be expected as we 

used a linear regression model to produce the results. If we charted just the error values in the same 

way, we could see how they are distributed along the zero line (see Figure 3). If they fall on the zero 

line, then our model estimate is accurate for this observation. As we can see, only one comes close 

to zero (5.1 model value for the actual value of 5). 

A spread of these errors around the zero line will define the precision of the model. If these values 

were closely scattered around the zero line, then we could consider the model more precise than 
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the one that shows a wider scatter of the errors around the zero line. For a more realistic example 

with more data (larger dataset), we would expect to observe this more clearly. 

 

 

Figure 3. Errors between the actual and model data 

 

We’ll now show how we executed all the error calculations in Excel, as per equations (1.2) - (1.12). 

The error metrics equations have been “translated” into Excel syntax in cells C16:C26 in Figure 4 and 

cells D16:D26 show the Excel functions used to execute every formula. 

 

 

Figure 4. Error metric calculations in Excel 
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Let’s look at these error metric values in cells C16:C26 and interpret them in the context of the 

actual values that represent the production in tonnes.  

ME (cell C16) shows a value of 0. This means that our model has produced an average error of zero 

tonnes. This sounds perfect, but it is not. You can see from column C that our model estimates are 

not perfect. They sometimes overestimate and sometimes underestimate. However, if you add them 

all up, they will most of the time be practically zero (cancelling each other), which will result in zero 

ME, or average error. This clearly indicates that ME is not the most sensitive and discriminatory error 

metric to use. 

MAE (cell C17) shows an average absolute error of 0.8 tonnes. It does not tell us which way we are 

making our errors (overestimating or underestimating). It just tells us that our model data are on 

average biased by 0.8 tonnes. On the surface, this looks OK and useful piece of information. 

MSE (cell C18) shows the sum of the squared error values, which is 0.875. Because this is the 

squared value, it cannot be put in the context of the units of this dataset (tonnes). From this 

perspective, MSE is fairly useless. However, it is an important measure as it serves as a stepping 

stone to RMS, and can be used as a comparative metric. In other words, if two models result in two 

different values of MSE for the same dataset, the one with the smaller MSE is superior. Again, this is 

also only partially true as MSE prefers smaller errors, even if they are not very accurate. 

RMS (cell C19) is 0.935 and we got it by taking the square root of MSE. This value of 0.935 is now in 

the same units as the dataset, so we can say that our model generates the RMS of 0.935 tonnes 

when attempting to model the true values.  

MPE (cell C20) shows -0.030. If we multiply this number by 100, this tells us that our model makes an 

average error of -3%. Again, potentially useful information. 

MAPE cell (C21) is 0.234, which again if multiplied by hundred shows as 23.4%. This says that our 

model makes an average percentage error of 23.4%, but without specifying in what direction the 

errors lean. 

SMAPE cell (C22) is 1.911, which implies a good model. The range of this metric is between 0 and 20, 

and although the number 1.911 does not mean much, it tells us where in the range 0 to 20 our 

average SMAPE error is. 

MASE cell (C23) is 0.56, but we need to be able to interpret this number. The benchmark for this 

error is the so-called naïve forecasts, where yesterday’s value is treated as today’s forecasts. For this 

naïve model, MASE is always 1. If we get the MASE value below 1 for a model we used, then this 

model should be considered superior to the naïve method. MASE above 1 means that the model 

used is not even as good as the naïve forecasts. In our case 0.56 is well below 1, so we can say that 

this model performs much better than a naïve approach to predictions. 

SE cell (C24) is 1.046 and it indicates how wide is the prediction corridor around our estimates. 

Assuming we used a z-value of 1.96 (which wouldn’t be correct here given how short the data set is, 

so the t-value would be more appropriate) then for a 95% confidence interval we can say that the 

true estimate is  1.96  1.046 =  2.05. This means adding and subtracting 2.05 from every estimate 

value to have a 95% confidence interval around your model predictions. Unlike all the previous 

metrics that are concerned with accuracy, this one focuses on precision. 

RSE cell (C25) shows a value of 32.24. What is 32.24 and what units are used here? The metric tells 

us that errors on average represent 32.24% of the value of the predictions. A general rule of thumb 
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is that this number should not be more than 30%. RSE is also a precision metric. The additional value 

that this metric conveys is that it also shows a response to the size of the dataset. To bring the value 

below 30, we can either change the model or increase the size of the dataset. 

RSQŷ,y (cell C26) shows a value of 0.84. This is the value of the r-squared statistics as a result of 

calculations using the linear regression model. Technically, we should call it RSQx,y because x and y 

are connected through linear regression. However, if we use other types of models that are not built 

around the regression principles, then this value will not produce the same results. This is why we 

call it RSQŷ,y. We are effectively measuring how closely the variations in ŷ are explained by the actual 

variations of y. 

OK, now we know what every error metric means, let’s see how they behave for different models. 

 

Scenarios created to evaluate every error metric 
 

We will use the template as in Figure 4, but this time we will calculate identical error metrics for a 

variety of different model values. We will keep the regression model and call it ŷ1. In addition to this 

one, we have 23 other models. They are all artificial models with a deliberate bias used to emphasise 

the behavioural pattern of different error metrics. Here is a brief description of every model: 

ŷ1 – Linear regression model ŷ = 0.53 + 0.76x 

ŷ2 – The model values ŷ are created by subtracting a constant of 0.01 from every value y. This shows 

a model with a very small negative systemic bias. 

Ŷ3 – The model values ŷ are created by subtracting a constant of 0.1 from every value y. This shows a 

model with a small negative systemic bias. 

Ŷ4 – The model values ŷ are created by adding a constant of 0.01 to every value y. This shows a 

model with a very small positive systemic bias. 

Ŷ5 – The model values ŷ are created by adding a constant of 0.1 to every value y. This shows a model 

with a small positive systemic bias. 

Ŷ6 – The model values ŷ are created by adding a constant of 0.1 to the values of y. This is a model 

with a fluctuating small bias. 

Ŷ7 – The model values ŷ are created by subtracting a constant of 0.5 from every value y. This is a 

model with a constant negative bias. 

Ŷ8 – The model values ŷ are created by adding a constant of 0.5 to every value y. This is a model with 

a constant positive bias. 

Ŷ9 – The model values ŷ are created by adding a constant of 0.5 to the values of y. This is a model 

with a fluctuating constant bias. 

Ŷ10 – The model values ŷ are created by subtracting a constant of 1 from every value y. Given that 

the average y is 4.7, this is a significant negative bias. 

Ŷ11 – The model values ŷ are created by adding a constant of 1 to every value y. Given that the 

average y is 4.7, this is a significant positive bias. 
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Ŷ12 – The model values ŷ are created by adding a constant of 1 to the values of y. Given that the 

average y is 4.7, this is a significant fluctuating bias. 

Ŷ13 – The model values ŷ are created by adding a constant of 2 to every value y. Given that the 

average y is 4.7, this is a very large positive bias. 

Ŷ14 – The model values ŷ are created by adding a constant of 2 to the values of y. Given that the 

average y is 4.7, this is a very large fluctuating bias. 

Ŷ15 – The model values ŷ are created by adding a constant of 2 to the values of y. Given that the 

average y is 4.7, this is a very large fluctuating bias. 

Ŷ16 – The model values ŷ are created by adding 1% of every y to itself (ŷ = y  1.01). This constitutes a 

very small positive bias. 

Ŷ17 – The model values ŷ are created by adding 2.5% of every y to itself. This constitutes a small 

positive bias. 

Ŷ18 – The model values ŷ are created by adding 5% of every y to itself. This constitutes a positive bias. 

Ŷ19 – The model values ŷ are created by adding 10% of every y to itself. This constitutes a significant 

positive bias. 

Ŷ20– The model values ŷ are created by adding 20% of every y to itself. This constitutes a large 

positive bias. 

Ŷ21 – The model values ŷ are created by subtracting 5% of every y to itself (ŷ = y  0.95). This 

constitutes a negative bias. 

Ŷ22 – The model values ŷ are created by subtracting 10% of every y to itself. This constitutes a 

significant negative bias. 

Ŷ23 – The model values ŷ are created by subtracting 20% of every y to itself (ŷ = y  0.80). This 

constitutes a large negative bias. 

Ŷ24 – The model values ŷ are created by subtracting 20% of every y to itself (ŷ = y  1.2 followed by 

ŷ = y  0.80). This constitutes a large fluctuating bias. 

 

We tried to see how error metrics will be responding if we have a positive bias present in our errors 

(models Y4, Y5 and Y8) and then how models respond if we have a negative bias (models Y2, Y3 and 

Y7). We contrasted these models with scenarios where the bias is fluctuating as bias (models Y6 and 

Y9, Y12 and Y15). And lastly, we wanted to see how error metrics respond if the magnitude of this bias 

becomes a significant percentage of the values in both negative and positive directions (models Y16 – 

Y23).   

Now we have all the models, let’s see what their error metrics are like (see Figures 5a and 5b). 
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Figure 5a. Dataset y and nine different models approximating it 

 

 

Figure 5b. Dataset y and further nine different models approximating it 

 

Behavioural patterns for different error metrics 
Similar to before, rows 17:27 are reserved for error metrics for every model. Let’s look at these 

rows, one at a time, and observe the behaviour of every error metric for different models. 

ME tracks well different models with different biases, except that occasionally produces zero, which 

is the result of positive and negative errors cancelling each other. This is the reason why this metric, 

although very sensitive and discriminatory, has limited value.  

MAE shows sensitivity to different levels of bias, but it cannot differentiate between a systemic 

positive bias from a negative bias. It also penalises estimates with a fluctuating bias more than those 

that contain just a positive or negative bias. 

MSE performs like MAE, except that it shows a tendency to overreact to larger fluctuating errors, 

which is understandable as the errors are squared. 



11 
 

RMS also performs like MAE and RMS. Because the errors are now expressed in the original units, it 

is a matter of preference to use either MAE (percentages) or RMS (data units). 

MPE seems to respond extremely well to both the magnitude of the bias as well as the direction, 

which makes it one of the prime candidates for the top error metric. The units that it is expressed 

are relative (i.e. the percentages of the original unit), which makes it universally applicable. 

MAPE suffers from the same problem as MAE, though it is marginally less sensitive to a larger 

fluctuating bias. 

SMAPE seems to penalise negative bias more than positive bias and when it comes to larger biases 

(such as 20%) then the fluctuating bias is even more penalised. 

MASE does not show that it can discriminate between positive and negative bias, nor the fluctuating 

bias. When it comes to larger bias (such as 20%) and if this bias is fluctuating, then the model gets an 

extra penalty. 

SE shows identical properties as MASE, but this is a useful error statistic as it measures precision 

rather than accuracy. It is, therefore, not in competition with other accuracy metrics. 

RSE behaves like SE, but whilst SE creates a value to build a confidence corridor around estimates, 

RSE expresses this corridor in terms of percentages. It defines the average percentage of the 

estimated value that the errors fluctuate within. It is commonly accepted that it should not be 

greater than 30. As we can see from cell O25, if one of the estimates ŷ is zero, unfortunately, RSE will 

collapse (we get a message #DIV/0!) and we cannot get a meaningful value of RSE. Still, this seems to 

be the only disadvantage of this metric. 

RSQ shows surprising insensitivity towards the systematic bias in model data. This means that it is 

not sensitive enough and could be misleading. The reason we used the word “surprising” is because 

this is one of the most quoted statistics when evaluating how well the model fits data. We think that 

the use of this statistic should be seriously reconsidered. 

So, we seem to have identified several top contenders that have a greater sensitivity towards 

different biases in errors and are able to discriminate better one type of bias from another. This 

means that rather than calculating several different metrics, we just need to stick to a couple of 

them. So, what are our recommendations? 

There is no doubt that the top contender for the accuracy of estimates/predictions is MPE. Although 

a few other metrics are potentially comparable to MPE, it makes no sense in calculating them as 

they certainly do not provide any additional information.  

From the precision perspective, the top contender is RSE. It is superior to SE for the simple reason 

that it can also help us indicate how much the sample size (the size of the dataset) affects the errors. 

We stated that if RSE is above 30%, we should either change the model or increase the dataset. SE 

does not have the power to clearly communicate this message. For this reason, we think that RSE is 

the top precision metric. 

One of the more disappointing metrics is RSQ or r-squared. The most quoted goodness of fit 

measure seems to disappoint at every level. It is insensitive to any bias that provides inaccurate but 

precise predictions. In fact, it is insensitive and indiscriminate, and it does not deserve the popularity 

it gained in many software packages. 
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Conclusions and recommendations 
Our objective was to examine a series of error measurement metrics, some of which measure 

accuracy and some precision and/or the so-called goodness of fit. We set to select one of each as the 

most “discerning” metric.  

To accomplish our objective, we created a series of artificial forecasts, or model estimates. Some of 

these model estimates have embedded bias that was either positive, negative, or fluctuating. Some 

have large errors and some have only small errors. The intent was to establish if the error metrics 

are capable of responding proportionally to the size of errors (sensitivity) and if they are capable of 

detecting the presence of a systemic bias (discrimination), as well as how they respond to mainly 

positive vs. negative bias. 

The two clear winners are MPE as the most sensitive and discriminatory measure of accuracy and 

RSE as the most sensitive and discriminatory measure of precision. Both metrics are relative, and the 

results are presented as percentages. If a metric that expresses errors in the data units is required, 

then RSE is the one to recommend for an accuracy metric. For the precision metric, SE is the natural 

choice that is expressed in the units of the dataset. 

One of the most popular metrics, r-squared, shows a complete lack of sensitivity and does not 

discriminate sufficiently for the presence of certain biases in model data, and therefore perhaps 

does not deserve the popularity it has. RSE is in fact also a good replacement for r-squared and it 

also has an added advantage over r-squared. RSE responds directly to the sample size (size of the 

dataset), which means that you can simulate the results by just changing the value of n and see what 

size of the data set produces acceptable results (RSE<30%). 

Most of the work and software packages use MSE and r-squared. As we have shown in this paper, 

they are OK, but have some serious limitations. As far as these two and other error metrics are 

concerned, we have to say that there is nothing wrong with them. They are just either not sensitive 

and discriminatory as the ones we recommended, or they just do not add any additional information 

to those we recommended. We can say that the metrics we recommended have fewer “blind” spots 

when compared to other error metrics. That is all there is to it. 

In summary, when conducting estimates or predicting the future values in time series or any other 

extrapolation method, if you just stick to MPE and RSE as the two error measurement methods, you 

will be in the position to best evaluate your alternatives and select the best model. MPE will help 

you select the most accurate model, and RMS will help you select the model that will deliver the 

most precise results. 
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